

Catalogs and Gridded Rate Models

Chuck Mueller USGS, Golden, CO

NSHM Workshop Mar 08, 2018 Newark, CA

Catalogs for hazard analysis: four steps

- Reformat & combine pre-existing input catalogs
 Get uniform moment magnitudes
 Get parameters for computing unbiased seismicity rates
- 2) Delete duplicates, explosions, mining seismicity
- 3) Decluster (Gardner and Knopoff, 1974)
- 4) Flag induced earthquakes

Moment Magnitude Symbology

- With measured and converted moment magnitudes from many diverse sources, we don't try to reconcile the difference between M and M_w.
- We simply use the symbol M_w for non-specific moment magnitude. This seems to be consistent with other catalog work (e.g., Grünthal and Wahlström, 2003).

Why uniform M_w?

Ground motion models.

We count earthquakes above specified magnitude thresholds to estimate seismicity rates. Input catalogs list disparate magnitudes/intensities, so we try to develop a uniform treatment.

Also, computed seismicity rates may be biased if magnitudes:

- a) follow an exponential frequency distribution, and
- b) are measured or estimated with uncertainty

- Mags are adjusted by factors that depend on b-value (b) and magnitude uncertainty ($\sigma_{\rm m}$)
- For b~1.0 & $\sigma_{\rm m}$ ~0.1-0.3, rate adjustments ~2–25%

Recent work:

- CEUS-SSC (2012, SSHAC Level 3)
- Arabasz et al., Utah Working Group (2016)

Categories of M_w

- 1) "Observed" or "measured" (SLU, GlobalCMT, ComCat)
- 2) Converted from another size measure Mostly CEUS (CEUS-SSC, 2012)
- 3) Set equal to m_L, m_b, etc.

 Mostly WUS (Felzer, 2007; Arabasz et al., 2016)
- 4) Original size measure is uncertain or complex

Sources of σ_m estimates

- A few input catalogs list σ_m (per earthquake)
- Estimates for earthquake categories or eras
- Estimates from regression (for converted mags)

Ranges of σ_{m}

- Observed M_w: ~0.1–0.2
- M_w converted from instrumental magnitude: ~0.2–0.3
- M_w converted from macroseismic data: ~0.2–0.5+

Current NSHM practice:

- 1) Choose target (rate-uniform) M_w category for the catalog Then, for each earthquake,
- 2) Identify one preferred size measure & get best M_w
- 3) Adjust best M_w to target M_w & compute corresponding counting factor N* (functions of b & σ_m)
- 4) Add $\sigma_{\rm m}$, adjusted M_w, and N* to the catalog record
- => Count adjusted M_w by N* (rather than unity) to get unbiased rates

NSHM Catalog Format

Fixed-length fields:

```
2.68
      -71.100 42.400
                         0 1705 06 27 0 0 0. 0.500 2.68 1.940 NCE | i0,04.0WES
                        10 2016 09 09 13 45 37.
                                                   0.100 3.42 1.027 SLUIwo, 3.44
3.44
      -89.530
              36.460
                        3 2016 11 30 09 38 37.4 0.250 2.70 1.180 OGS ml,OGS,2.4MLOGS
2.70
      -99.828
              36.648
               37.876
                         9 2016 12 22 11 22 35.7 0.250 2.54 1.180 PDE lmd, 2.19md, se
2.54
      -77.623
 M_{\rm w}
          lon
                  lat
                                 m d h m
                                                      \sigma_{\rm m} M_{\rm w}^*
                                                                  N* comment
                                                S
```


Delete explosions and mining-related seismicity

- Search by event-type (limited)
- Published resources (limited)
 - Non-tectonic catalogs
 - Mask out mining zones

Delete duplicates in time/distance windows

- Windows reflect era-dependence of catalog accuracy/completeness
- Windows are not meant to fix errors
- Time windows automatically expand if origin time is partially unknown

Era	Time Window	Distance Window
1990-present	10 s	20 km
1960–1989	20 s	50 km
1930–1959	60 s	100 km
1880–1929	10 m	250 km
pre-1880	30 m	500 km

A hierarchy based on our judgment is used to select a favorite from among duplicate entries

We prefer:

- Researched catalogs from special studies
- Original, single-institution catalogs
- Catalogs that list M_w

All other things being equal, compilation catalogs are lower preference

Decluster

- Most hazard codes assume statistically independent events
- Gardner & Knopoff (GK) (1974)
 - Each earthquake is considered a possible mainshock
 - Use magnitude-dependent radii & time windows to find fore/aftershocks
- GK74 is considered a bit old-fashioned, but...
 - Performed well in CEUS-SSC test (despite CA roots)
 - Advantage: no tuning parameters

Step 4

Induced earthquakes (IE) (CEUS)

- Increased seismicity in CEUS since 2008
- Timing and locations suggest links to underground fluid injection
- Use information from literature & local expertise to identify sequences

 Parameterize with simple time windows and map polygons

CEUS Catalogs

- Mix: NSHM, M_{wo}, other M_w,
 NCEER91, USH/SRA, PDE,
 GSC, CEUS-SSC, OGS, etc.
- Use CEUS-SSC M_w conversions

(From CEUS-SSC, 2012)

Original Size Measure	Conversion Equation	
Body-wave magnitude (m_b, m_{bLg}, M_N)	$\begin{split} M_{we} &= m_b - 0.316 - 0.118 Z_{NE} - 0.192 Z_{1997GSC} + \\ & 0.280 Z_{1982NE}, \\ & where \\ Z_{NE} &= 1 \text{ for eqks in the northeast}^2, \text{ and } 0 \text{ otherwise} \\ Z_{1997GSC} &= 1 \text{ for eqks after } 1997 \text{ recorded by GSC, and } 0 \\ & \text{ otherwise} \\ Z_{1982NE} &= 1 \text{ for eqks in the northeast}^2 \text{ before } 1982 \\ & \text{ recorded by other than GSC, and } 0 \text{ otherwise} \end{split}$	0.24
M _L from GSC	compute $m_b = M_L - 0.21$, and use m_b conversion	0.42
$ m M_S$	$M_{we} = 2.654 + 0.334M_S + 0.040M_S^2$	0.20
M_L , M_D , M_C in northeast (non-GSC)	$M_{\text{we}} = 0.633 + 0.806(M_{\text{L}}, M_{\text{D}}, M_{\text{C}})$	0.27
M_L , M_D , M_C in midcontinent, east of -100°	$M_{\text{we}} = 0.869 + 0.762(M_{\text{L}}, M_{\text{D}}, M_{\text{C}})$	0.25
M _L , M _D , M _C in midcontinent west of -100°	use m _b conversion	0.24
FA (felt area, km²)	$M_{\text{we}} = 1.41 + 0.218 \times \ln(\text{FA}) + 0.00087 \times (\text{FA})^{0.5}$	0.22
I ₀ (maximum intensity)	$M_{we} = 0.017 + 0.666 \times I_0$	0.50

WUS Catalogs

- Mix: NSHM, M_{wo}, UCERF, USH/SRA, PDE, GSC, etc.
- $M_w = m_L, m_b, m_D, etc.$
- Two Step-1 catalogs to facilitate integration of California seismicity:
 - ✓ UCERF zone: prefer UCERF catalog
 - ✓ Rest of WUS: don't use UCERF catalog
- No induced earthquakes (so far)

CEUS background sources

- M_w catalog; delete IE for building code maps
- Seven completeness zones (based on CEUS-SSC)
- b = 1.0
- Four gridded rate models:
 - 1) Model 1: count $M_w 2.7 + (\sim m_b 3 +)$
 - 2) Model 2: count $M_w 3.7 + (\sim m_b 4 +)$
 - 3) Model 3: count $M_w 4.7 + (\sim m_b 5 +)$
 - 4) Model 4: floors ("adaptive") for four sub-regions Uniform rates for Eastern Tennessee & New Madrid
- Smoothing: 2-D gaussian fixed & nearest-neighbor
- Logic trees for Models 1–4 & smoothing alternatives

CEUS rate grids (10^{ai}), 2008 NSHM

Top: m_b 3+ with 50km smoothing (Model 1)

Bottom: m_b5+ with 75km smoothing (Model 3)

WUS background sources

- M_w catalog
- Distinct completeness for coastal California and rest of WUS
- b = 0.8
- Gridded rate models:
 - Weichert with three completeness levels: M_w4+, 5+, 6+
 - Extensional & non-extensional sub-regions
 - Floors ("adaptive") for five sub-regions
- Smoothing: 2-D gaussian fixed & nearest neighbor

WUS rate grids (10^{ai}), 2014 NSHM

M_w4+ , 5+, 6+ with 50km smoothing

Issues

CEUS: Change minimum mag for rates from M_w2.7 to M_w3.0?

Advantage:

- 1) Less sensitivity to M_w conversions for small earthquakes
- 2) Less sensitivity to man-made seismicity
- 3) Less sensitivity to declustering
- 4) Simpler completeness models & better rate estimates

Disadvantage:

- 1) Lose some hazard
- 2) $M_w 3 \approx m_b 3.3$; step "backward" from $m_b 3$?

Different mag min for eastern CEUS (m_{bLg}) and western CEUS (m_L)?

Logic tree...?

CEUS: Declustering in Oklahoma?

With hazard models based on 1-year catalogs, and ~1-year GK windows for mid-M_w5 eqks, we see some unreasonable declustering behavior in

Oklahoma

Prague: Adjust windows?
Just Oklahoma? All CEUS?
Use a different declustering
methodology?

CEUS: Mag conversions for small earthquakes?

Empirical conversions are developed from observed M_w data, which doesn't exist for small earthquakes.

Is there a better way to estimate M_w for small events?

Other Issues

CEUS & WUS: Better treatment of mining seismicity?

CEUS & WUS: Better duplicate checking?

WUS: Induced earthquakes?

CEUS & WUS: Use PDE M_ws with high preference?

CEUS & WUS: b-value zonation?

CEUS & WUS: Update or maintain floor/zone rates?

CEUS: Change floor weight in Rocky Mtn zone?

CEUS & WUS: Better M_w estimates for old earthquakes?

